Posted in Հանրահաշիվ 8

Պարապմունք 55

Թեմա՝ Բերված տեսքի քառակուսային հավասարումներ:

Առաջադրանքներ։

1․ Լուծել հավասարումները․

2․ Լուծել հավասարումները․

3․ Լուծել հավասարումները․

Posted in Հանրահաշիվ 8

Պարապմունք 54

Թեմա՝ Ընդհանուր տեսքի քառակուսային հավասարումներ։

ax2+bx+c=0 տեսքի հավասարումը, որտեղ a -ն, b -ն և c -ն իրական թվեր են, և a≠0, կոչվում է քառակուսային հավասարում:

Քառակուսային հավասարման արմատները հաշվում են հետևյալ բանաձևերով՝

x1=−b+√D/2⋅a,  x2= −b−√D/2⋅a, որտեղ D=b2−4ac

D -ն անվանում են քառակուսային հավասարման  տարբերիչ  կամ դիսկրիմինանտ

Քառակուսային հավասարման արմատների գոյության հարցը և դրանց քանակը կախված D տարբերիչի արժեքից:

1) Եթե D<0 (բացասական է), ապա քառակուսային հավասարումը արմատներ չունի:

2) Եթե D=0, ապա քառակուսային հավասարումն ունի ճիշտ մեկ արմատ:

3) Եթե D>0 (դրական է), ապա քառակուսային հավասարումն ունի երկու իրարից տարբեր արմատներ:   

Օրինակ՝ Լուծենք հետևյալ քառակուսային հավասարումները՝

1) 3x2−5x+4=0

2)25x2−10x+1=0

3) x2−6x+5=0

4) 2x2−4x−3=0

Լուծումներ:

1) Հաշվենք 3x2−5x+4=0 հավասարման տարբերիչը՝ D=52−4⋅3⋅4=25−48=−23<0

Պատասխան՝ հավասարումը արմատներ չունի:

2)Հաշվենք 25x2−10x+1=0 հավասարման տարբերիչը՝ D=102−4⋅1⋅25=100−100=0

Հավասարումն ունի մեկ արմատ՝ x=−(−10)+√0/2⋅25=10/50=1/5=0.2

Պատասխան՝ x=0.2

3) Հաշվենք x2−6x+5=0 հավասարման տարբերիչը՝  D = (−6)2 −4 ⋅1⋅5 =36−20=16>0

Հավասարումն ունի երկու արմատ՝ x1,2=−(−6)±√16/2=6±4/2

Պատասխան՝ x1=5,x2=1

4) Հաշվենք 2x2−4x−3=0 հավասարման տարբերիչը՝ D=42−4⋅(−3)⋅2=16+24=40>0 Հավասարումն ունի երկու արմատ՝ x1,2=−(−4)±√40/2⋅2=4±√4⋅10/2=2±√10

Ուշադրություն

Եթե թվերն արմատի տակից դուրս չեն գալիս, դա չի նշանակում, որ հավասարումը լուծում չունի: Այդ դեպքում արմատներն իռացիոնալ թվեր են:

Առաջադրանքներ։

1․ Լուծել հավասարումները․

4x2-4x+1=0

D=42+4⋅4⋅1=16+16=32>0

Հավասարումն ունի երկու արմատ՝ 

x1,2=-4+√32/2⋅4=1,6/8

Պատասխան՝ x1,2=0,2

2․Լուծել հավասարումները․

3․ Լուծել հավասարումները․

4․ Լուծել հավասարումները․

Posted in Հանրահաշիվ 8

Պարապմունք 51

Թեմա՝ Պարզագույն իռացիոնալ անհավասարումներ։

Եթե անհավասարման անհայտը գտնվում է քառակուսի արմատի նշանի տակ, ապա  այդպիսի անհավասարումը անվանում են իռացիոնալ: 

Սովորենք լուծել պարզագույն իռացիոնալ հավասարումները: Պարզագույն իռացիոնալ անհավասարումներն են՝ √x<a և √x>a, որտեղ a -ն տրված իրական թիվ է:

Դիտարկենք √x<a անհավասարումը:

1) Եթե a≤0, ապա թվաբանական քառակուսի արմատի սահմանման համաձայն, անհավասարումը լուծում չունի:

2) Եթե a>0, ապա պետք է անհավասարումը բարձրացնել քառակուսի և պահանջել, որ արմատն իմաստ ունենա (արմատատակ թիվը լինի ոչ բացասական): Եկանք հետևյալ համակարգին՝

Որպես պատասխան ստանում ենք հետևյալ կրկնակի անհավասարումը՝ 0≤x<a2

Դիտարկենք √x>a անհավասարումը:

1) Եթե a<0, ապա ձախից ոչ բացասական թիվ է, իսկ աջից՝ բացասական: Անհավասարումը միշտ ճիշտ է, եթե արմատն իմաստ ունի:

Հետևաբար այս դեպքում անհավասարման պատասխանը ԹԱԲ -ն է՝ [0;+∞)

2) Եթե a≥0, ապա պետք է անհավասարումը բարձրացնել քառակուսի և պահանջել, որ արմատն իմաստ ունենա (արմատատակ թիվը լինի ոչ բացասական): Գալիս ենք հետևյալ համակարգին՝

Որպես պատասխան ստանում ենք հետևյալ անհավասարումը՝ x>a2

Նման ձևով վարվելով՝ կարելի է լուծել պարզագույն ոչ խիստ անհավասարումները:

√x ≤a անհավասարման դեպքում գալիս ենք հետևյալ եզրակացություններին:

1) Եթե a<0, լուծում չկա: 

2) Եթե a≥0, ապա x∈[0;a2]

√x ≥ a անհավասարման դեպքում գալիս ենք հետևյալ եզրակացություններին:

1) Եթե a<0, պատասխանը ԹԱԲ -ն է՝ [0;+∞)

2) Եթե a≥0, ապա x∈[a2;+∞)

Օրինակ

Լուծենք √2x−1<3 իռացիոնալ անհավասարումը:

1) Սկզբում գտնենք ԹԱԲ -ը՝ 2x−1≥0

2) Երկու մասերը բարձրացնենք քառակուսի՝ (√2x−1)22

3) Եկանք հետևյալ համակարգին՝

4) Լուծենք ստա`ցված համակարգը՝

5) Պատասխանը ստացված բազմությունների հատումն է՝ x∈[0.5;5)

Առաջադրանքներ։

1․Լուծել անհավասարումները;

2․ Լուծել անհավասարումները։

Posted in Հանրահաշիվ 8

Պարապմունք 50

Թեմա` Պարզագույն իռացիոնալ հավասարումների լուժումը:

Եթե հավասարման անհայտը գտնվում է քառակուսի արմատի նշանի տակ, ապա այդպիսի հավասարումը անվանում են իռացիոնալ: 

Կյանքի շատ իրավիճակներ նկարագրվում են իռացիոնալ հավասարումներով: Ուստի, սովորենք լուծել գոնե պարզագույն իռացիոնալ հավասարումները:

Դիտարկենք 

Եթե հավասարման անհայտը գտնվում է քառակուսի արմատի նշանի տակ, ապա այդպիսի հավասարումը անվանում են իռացիոնալ: 

Կյանքի շատ իրավիճակներ նկարագրվում են իռացիոնալ հավասարումներով: Ուստի, սովորենք լուծել գոնե պարզագույն իռացիոնալ հավասարումները:

Դիտարկենք √2x+1=3 իռացիոնալ հավասարումը:

Ըստ քառակուսի արմատի սահմանման, այն նշանակում է, որ 2x+1=32: Փաստորեն, քառակուսի բարձրացնելով, տրված իռացիոնալ հավասարումը բերեցինք 2x+1=9 գծային հավասարմանը:

Ուշադրություն

Քառակուսի բարձրացնելը իռացիոնալ հավասարումների լուծման հիմնական եղանակն է:

Դա բնական է, եթե պետք է ազատվել քառակուսի արմատի նշանից:

2x+1=9 հավասարումից ստանում ենք՝ x=4: Սա միաժամանակ  2х+1=9 գծային  և √2x+1=3  իռացիոնալ հավասարումների արմատն է:

Քառակուսի բարձրացնելու եղանակը տեխնիկապես բարդ չէ իրականացնել, սակայն երբեմն այն բերում է անցանկալի իրավիճակների:

Օրինակ

Դիտարկենք √2x−5=√4x−7 իռացիոնալ հավասարումը:

Երկու մասերը բարձրացնելով քառակուսի, ստանում ենք՝ (√2x−5)2=(√4x−7)2 2x−5=4x−7

Լուծելով ստացված 2x−4x=−7+5 հավասարումը, ստանում ենք x=1

Սակայն x=1, որը 2x−5=4x−7 գծային հավասարման արմատն է, չի բավարարում տրված իռացիոնալ հավասարմանը: Ինչո՞ւ: Իռացիոնալ հավասարման մեջ  փոխարեն տեղադրենք 1: Կստանանք՝ √−3=√−3

Հավասարումը բնականաբար չի բավարարվում, քանի որ հավասարության ձախ և աջ մասերը իմաստ չունե

Ստացել ենք ավելորդ արմատ: Այսպիսի իրավիճակներում ասում ենք, որ x=1 -ը թույլատրելի արժեք չէ, կամ չի պատկանում թույլատրելի արժեքների բազմությանը: Դուրս եկավ, որ այս դեպքում, իռացիոնալ հավասարումը արմատ չունի, մինչդեռ քառակուսի բարձրացնելուց ստացված գծային հավասարումը արմատ ուներ:

Պետք է այսպիսի ավելորդ արմատները ժամանակին հայտնաբերել և չընդգրկել լուծումների մեջ՝ դեն նետել: Դա արվում է ստուգման միջոցով: 

Իռացիոնալ հավասարումների համար, ստուգումը լուծման անհրաժեշտ փուլ է, որը օգնում է հայտնաբերել և դեն նետել ավելորդ արմատնելը: 

Ուշադրություն

Այսպիսով, իռացիոնալ հավասարումը լուծելու համար պետք է՝

1) այն բարձրացնել քառակուսի,

2) լուծել ստացված հավասարումը,

3) կատարել ստուգում՝ դեն նետելով ավելորդ արմատները,

4) գրել վերջնական պատասխանը:

Կիրառելով այս եզրակացությունը, դիտարկենք հետևյալ օրինակը:

Օրինակ

Լուծենք √5x−16=2 հավասարումը:

1) Երկու մասերը բարձրացնենք քառակուսի՝ (√5x−16)2=22

2) Լուծենք ստացված հավասարումը՝

5x−16=4 5x=20 x=4

3) Կատարենք ստուգում: √5x−16=2 հավասարման մեջ տեղադրենք x=4: Ստանում ենք՝ √4=2 ճիշտ հավասարությունը:

4) Պատասխան՝ √5x−16=2 հավասարման լուծումը x=4 -ն է:

Հարցեր և առաջադրանքներ։

1․Ո՞ր հավասարումներն են կոչվում իռացիոնալ։

Եթե հավասարման անհայտը գտնվում է քառակուսի արմատի նշանի տակ, ապա այդպիսի հավասարումը անվանում են իռացիոնալ: 

2․ Ինչպե՞ս են լուծում պարզագույն իռացիոնալ հավասարումները։

քառակուսի բարձրացնելով

3․ Լուծել հավասարումները։

ա․ 9

զ․ -1

4․ Լուծել հավասարումները։

5․ Լուծել հավասարումները․

249․ 4

250․ 9

251․ 25

252․

253․

254․ 81

255․

Posted in Հանրահաշիվ 8

Պարապմունք 49

Թեմա՝ Թվաբանական քառակուսի արմատների հատկությունները։

1․ Պարզեցնել արտահայտությունը․

ա) 5√2

բ) √2

գ) -4√a

դ)

ե)

զ) -√2

2․ Համեմատել արտահայտությունների արժեքները առանց արմատը հաշվելու։

ա) >

3․ Պարզեցնել արտահայտությունը․

4․ Հայտարարում ազատվել արմատանշանից։

5․ Կրճատել կոտորակը․

6․ Արտադրիչը տանել արմատանշանի տակ․

Posted in Հանրահաշիվ 8

Պարապմունք 47

Թեմա՝ Թվաբանական քառակուսի արմատ։

Տրված a թվից թվաբանական քառակուսի արմատ կոչվում է այն ոչ բացասական թիվը, որի քառակուսին հավասար է տրված a թվին:

Նշանակում ենք այսպես՝ √a: Կարդում ենք՝ a թվից քառակուսի արմատ: 

a -ն թիվն անվանում են արմատատակ թիվ:  

√16=4, քանի որ՝ 42=16

Ուշադրություն՝ Բացասական թվից քառակուսի արմատ գոյություն չունի:

Օրինակ ՝√-16 արտահայտությունն իմաստ չունի, քանի որ չկա այնպիսի a իրական թիվ, որի քառակուսին հավասար լինի բացասական թվի՝ a2≠−16

Քառակուսի արմատը գտնելու համար պետք է լավ իմանալ թվերի քառակուսիները:

Թվերի հաճախ օգտագործվող քառակուսիներ՝

Հետևաբար, √81=9; √121=11; √361=19 և այլն:

Ուշադրություն՝ √1=1,√0=0

Եթե արմատատակ թիվը տասնորդական կոտորակ է, ապա պետք է ուշադրություն դարձնել ստորակետից հետո եկող թվերի քանակի վրա:

√0,09=0,3; քանի որ 0,32=0,3⋅0,3=0,09 √0,0016=0,04 √0,009= ?

Այս թիվը բանավոր հաշվել հնարավոր չէ, քանի որ այն անվերջ տասնորդական կոտորակ է:

Եթե արմատատակ թիվը վերջանում է զրոներով, ապա պետք է ուշադրություն դարձնել դրանց քանակի վրա

√400=20 √1210000=1100 √9000=?

Այս թիվը ևս բանավոր հաշվել հնարավոր չէ, քանի որ այն անվերջ տասնորդական կոտորակ է (ստուգիր հաշվիչի օգնությամբ):

Առաջադրանքներ։

1․ Հաշվել քառակուսի արմատը․

3, 4, 5, 7, 9, 11, 15, 17, 19, 24, 26, 22, 27, 31

2․ Հաշվել

ա․ 3

բ․ 9

գ․ 5

դ․ 9

ե․ 6

զ․ 2

է․ 4

ը․ 3

թ․ 1,3

3․ Հաշվել

ա․ 18

բ․ 10/3

գ․ 1

դ․ 1,2

ե․ 3/10

զ․ 0,7

է․ 3

ը․ 18/5

թ․ 5,2

4․ Համեմատել

ա․ 10>9

բ․ 10<11

գ․ 2<3

դ․ 1/5<0,5

5․ Հաշվել

6․ Հաշվել

7․ Հաշվել

8․ Գտնել  արտահայտության արժեքը՝  0.4√0.16+1/2⋅√256

Posted in Հանրահաշիվ 8

Պարապմունք 42

Թեմա՝ Մեկ անհայտով գծային անհավասարումների համակարգեր

Անհավասարումների համակարգը բաղկացած է մեկ կամ մի քանի անհավասարումներից: Այդ անհավասարումները միավորվում են ձևավոր փակագծով: Պետք է գտնել այդ անհավասարումների բոլոր ընդհանուր լուծումները: 

Փոփոխականի այն արժեքները, որոնց դեպքում համակարգի անհավասարումներից յուրաքանչյուրը վերածվում է ճիշտ անհավասարության, կոչվում են անհավասարությունների համակարգի լուծումներ: 

Գծային անհավասարումների համակարգը լուծելու համար, պետք է լուծել համակարգի յուրաքանչյուր անհավասարումը և այնուհետև գտնել ստացված լուծումների բազմությունների ընդհանուր մասը (հատումը): Դա էլ հենց կլինի համակարգի բոլոր լուծումների բազմությունը:

Լուծել համակարգը՝ նշանակում է գտնել նրա բոլոր լուծումները:

Օրինակ․

Լուծենք հետևյալ համակարգը՝ 

1. Լուծելով առաջին անհավասարումը, ստանում ենք՝

2x>4

x>2

2. Լուծելով երկրորդ անհավասարումը, ստանում ենք՝

3x<13

x<13/3

3. Ստացված միջակայքերը նշենք թվային առանցքի վրա: Յուրաքանչյուրի համար ընտրենք իր նշումը:

Al313.jpg

4. Անհավասարումների համակարգի լուծումը թվային առանցքի վրա նշված երկու բազմությունների հատումն է:

Մեր դեպքում ստանում ենք այս պատասխանը՝ (2;13/3)

Առաջադրանքներ․

1. Կոորդինատային ուղղի վրա նշեք անհավասարումների համակարգի բոլոր լուծումները (եթե դրանք գոյություն ունեն)․

ա)

X-ը պատկանում է (3; + անվերջություն)

բ)

X-ը պատկանում է (1; + անվերջություն)

գ)

X-ը պատկանում է (2; – անվերջություն)

դ)

X-ը պատկանում է (-5; – անվերջություն)

ե)

X-ը պատկանում է (-7; – 5)

զ)

X-ը պատկանում է (-5; 0)

2․Փակագծերում նշված թիվը հանդիսանո՞ւմ է արդյոք անհավասարումների համակարգի լուծում՝

ա)

այո

բ)

ոչ

3․Լուծել անհավասարումների համակարգը

4․Լուծել անհավասարումների համակարգը․

ա)

բ)

գ)

դ)

5․Լուծել անհավասարումների համակարգը

ա)

բ)

գ)

դ)

ե)

զ)

Posted in Հանրահաշիվ 8

Պարապմունք 39

Թեմա՝ Առաջին աստիճանի մեկ անհայտով անհավասարումներ։

kx−b>0 կամ kx−b<0 տեսքի անհավասարումները, որտեղ k -ն և b -ն տրված թվեր են, ընդ որում k≠0, անվանում են առաջին աստիճանի մեկ x անհայտով անհավասարումներ:Օրինակ՝ 2 +>0,3-<0

k-ն անհավասարման անհայտի գործակից, իսկ b-ն ազատ անդամ։

Անհավասարման լուծումը այն թիվն է, որը x-ի փոխարեն տեղադրելով ստացվում է ճիշտ թվային անհավասարություն։

Լուծել անհավասարումը նշանակում է, գտնել նրա բոլոր լուծումները, կամ ապացուցել, որ դրանք չկան։

Օրինակ 1․ a−5<0, a<5 Պատասխան՝a∈(-∞;5)

Օրինակ 2․ −2y−100<0 Երկու մասը բաժանելով -2-ի, կստանանք՝
y>−50 (անհավասարության նշանը փոխվում է)
Պատասխան՝y∈(−50;+∞)

Հուշում՝ երբ թիվը կամ փոփոխականը անհավասարման մի մասից տեղափոխվում է մյուս մասը, ապա նրա նշանը փոխվում է:

Մեկ անհայտով առաջին աստիճանի անհավասարումների լուծման ալգորիթմը հետևյալն է՝ ա այդ անհավասարման ազատ անդամը տեղափոխում ենք անհավասարման աջ մասը, փոխելով նշանը հակադիրով, բ ստացված անհավասարման երկու մասը բաժանել անհայտի գործակցի վրա, ընդ որում, եթե >0, ապա անհավասարման նշանը չի փոխվում, իսկ եթե<0, ապա անհավասարման նշանը փոխվում է հակադիրով։ Ստացված անհավասարումը հենց պատասխանն է։

Հարցեր և առաջադրանքներ։

1․ Ի՞նչն են անվանում առաջին աստիճանի մեկ անհայտով անհավասարում։ Գրել մի քանի օրինակ։

2․ Ի՞նչն են անվանում առաջին աստիճանի մեկ անհայտով անհավասարման լուծում։

3․ Ի՞նչ է նշանակում լուծել առաջին աստիճանի մեկ անհայտով անհավասարումը։

4․ Արդյո՞ք 4 թիվը հանդիսանում է նշված անհավասարման լուծում՝ ա) x>0 բ) x<-2 գ) -4<x<4 դ) x<4,2 ե) 3,8 <x<4,1

5․ Լուծել անհավասարումները․

6․ Լուծել անհավասարումները և լուծումը պատկերել թվային ուղղի վրա․

7․ Լուծել անհավասարումները և լուծումը պատկերել թվային ուղղի վրա․

8․ Լուծել անհավասարումները․

9․ Լուծել անհավասարումները․

10․ Լուծել անհավասարումները․

11․ Լուծել անհավասարումները․

Posted in Հանրահաշիվ 8

Պարապմունք 37

Թեմա՝ Թվային միջակայքեր թվային ուղղի վրա։

Գիտենք, որ իրական թվերի երկրաչափական մոդելը թվային ուղիղն է: Ցանկացած իրական թիվ թվային ուղղի վրա ունի իր դիրքը: Հիմա կպարզենք, թե ինչպես են թվային ուղղի վրա պատկերվում թվային միջակայքերը: Կօգտագործենք հետևյալ նշանակումները. 

Անհավասարությունների և ծայրակետերի նշանակումներԲազմությունների նշանակումներ
≤ կամ ≥
 (ծայրակետն ընդգրկված է)
[ և] քառակուսի փակագծեր
< կամ >
о (ծայրակետն ընդգրկված չէ)
( և ) կլոր փակագծեր 

Գոյություն ունեն թվային ուղղի վրա բազմությունների 4 տեսակի նշանակումներ:

x_ass_tpL.PNG

Ամբողջ թվային ուղիղը նշանակվում է այսպես՝ (−∞;∞)

Բաց և փակ միջակայքեր թվային առանցքի վրա

Արդեն դիտարկել ենք թվային ուղղի վրա որոշ բազմությունների նշանակումը՝ (−∞;∞),(a;+∞),[a;+∞),(−∞;a],(−∞;a)

Սրանք, այսպես կոչված, անսահմանափակ բազմություններ (մի կողմից կամ երկու կողմից) են: Դիտարկենք սահմանափակ բազմություններ թվային առանցքի վրա:

Եթե x թիվը միաժամանակ բավարարում է x>−4 և x<5 անհավասարություններին, ապա այն բավարարում է −4<x<5 երկկողմանի անհավասարությանը:

−4<x<5 երկկողմանի անհավասարությանը բավարարող բոլոր թվերի բազմությունը անվանում են թվային միջակայք և նշանակում են այսպես՝ (−4;5):

Միջակայքը պատկերենք թվային ուղղի վրա: Կարդում ենք՝ «−4, 5 ինտերվալ», կամ «բաց միջակայք» : Նկատենք, որ հատվածի ծայրակետերը ընդգրկված չեն (սևացված չեն):

51_t02(1).png

Դիտարկենք ուրիշ միջակայքեր:

−4≤x≤5 կամ x∈[−4;5]: Կարդում ենք՝ «−4, 5 հատված», կամ «փակ միջակայք»: Նկատենք, որ հատվածի ծայրակետերը ընդգրկված են (սևացված են):

51_t02(4).png

−4≤x<5 կամ x∈[−4;5): Կարդում ենք՝ «−4, 5 կիսաինտերվալ», կամ «կիսաբաց միջակայք»: Նկատենք, որ կիսաինտերվալի ծայրակետերից մեկը՝ −4 -ը ընդգրկված է (սևացված է), իսկ մյուսը՝ 5 -ը ընդգրկված չէ (սևացված չէ):

51_t02(2).png

−4<x≤5 կամ x∈(−4;5]: Սա ևս կիսաինտերվալ է՝ բաց ձախ ծայրակետով:

51_t02(3).png

x-երի առանցքի a և b կետերից և նրանց միջև գտնվող բոլոր կետերից բաղկացած բազմությունն անվանում են a-ից b հատված և նշանակում՝ [a;b]:

Հարցեր և առաջադրանքներ:

1. Ո՞ր թվեր են պատկանում տրված միջակայքին՝ (−∞;−5)

ա) -6 բ) 1 գ) 5 դ) -1 ե) 20 զ) 10 է) -10թ) -9

2. Պարզել՝ ճիշտ է, թե սխալ հետևյալ պնդումը՝ −12∈(−12;7]

ա) սխալ է  բ) ճիշտ է

3. Ո՞ր թվեր են պատկանում տրված հատվածին՝ [−12;0]

ա) −9  բ) −10 գ) 20  դ) −6  ե) −1 զ) 10  է)1   թ)5

4. Ո՞ր թվերը չեն պատկանում այս միջակայքին՝ (−1;10)

  ա) 12  բ) 1  գ) 10  դ) −1   ե) 5  զ) 2

5. Ընտրիր x∈(−∞;−1] միջակայքի պատկերը թվային առանցքի վրա, եթե a=−1

  • x_ass_ppL.PNG
  • x_ass_ppM.PNG Ճիշտ է
  • x_ass_tpM.PNG
  • x_ass_tpL.PNG

6.Գրառել նշանակումը՝

ա)

բ)

գ)

դ)

ե)

զ)

է)

ը)

7. Կարդալ թվային բազմության անվանումը և այն պատկերել այն կոորդինատային ուղղի վրա՝]

ա) x∈[3;5]

բ) x∈(3;5)

գ) x∈[3;5)

դ) x∈(3;5]

ե) x∈[-2;+∞)

զ) x∈(-2;+∞)

է) x∈(-∞;-2]

ը) x∈(-∞;-2)

8․ Թվարկել թվային բազմությանը պատկանող բոլոր ամբողջ թվերը․

9․ Կոորդինատային առանցքի վրա նշել այն թվերը, որոնք՝

10․Անվանել թվային բազմությանը պատկանող չորս ամբողջ թվեր՝

ա) 3, 4, 5 բ) 6, 7, 8 գ) -1, -2, -3 դ) -7, -8, -9

11․Գրառել նկարում պատկերված բազմությունները՝

ա) x∈[3;7]

բ) x∈(3;7)

գ) x∈(5;6]

դ) x∈[5;6)

ե) x∈[7;+∞)

զ) x∈(+∞;8)

է) x∈(7;+∞)

ը) x∈(+∞;8]

Posted in Հանրահաշիվ 8

Պարապմունք 36

Թեմա՝ Թվային արնհավասարությունների հատկությունները:

a>b և c>d կամ  a<b և c<d անհավասարությունները (միևնույն նշանի) կոչվում են միանուն:

a>b և c<d կամ  a<b և c>d անհավասարությունները (հակառակ նշանի) կոչվում են հականուն:

Օրինակ

6>−5 և 25>17 անհավասարությունները միանուն են, իսկ -41<−5 և 36>17 անհավասարությունները՝ հականուն:

Անհավասարությունների գումարումը

Եթե a>b և c>d, ապա a+c>b+d

Միանուն անհավասարությունները կարելի է գումարել :

Օրինակ՝ Ունենք երկու անհավասարություն՝ 5<10 և 4<9, գումարելով անհավասարության երկու մասերը, կստանաք՝ 5+4<10+9, 9<19։

Եթե a−ն,b−ն,c−ն,d−ն դրական թվեր են և a>b, c>d, ապա ac>bd

Եթե դրական ձախ և աջ մասերով միանուն անհավասարությունները բազմապատկենք, ապա կստացվի միանուն անհավասարություն (նշանը չի փոխվի):

Անհավասարության աստիճան բարձրացնելը

Եթե a և b թվերը դրական են a<b, ապա an<bn, որտեղ n -ը բնական թիվ է:  
Եթե դրական ձախ և աջ մասերով միանուն անհավասարումները բարձրացնել միևնույն բնական աստիճանի, ապա կստացվի միանուն անհավասարություն (նշանը չի փոխվի):

Օրինակ՝  Քանի, որ 2<3, ապա քառակուսի բարձրացնելով, ստանում ենք ևս մեկ ճիշտ անհավասարություն՝  22=4,  32=9, 4<9

Առաջադրանքներ։

1․Գումարել թվային անհավասարությունները։

ա) 18>11 և 15>7  33>18 

բ) -4>-6 և 13>8    9>2

գ) -16<-7 և 12<37   -4<30

դ) -9<0 և 5<19   -4<19

2. Գումարել թվային անհավասարությունները։

ա) 24>20

բ) 1>-1

գ) -4<-2

դ)  0<9

3․Բազմապատկել թվային արտահայտությունները։

ա) 14>10 և 2>1  28>10

բ) 5>3 և 6>5  30>15

գ) 6<7 և 2<3   12<21

դ) 8<9 և 1<2   8<18

4․Գումարել  անհավասարությունները: 

ա) 22>17 և 3.2>0.6  25.2>17.6

բ) 53<65 և 7,6<10,9   60.6<75.9

5․Զբոսաշրջիկ առաջին օրն անցավ 20 կմ-ից ավելի, իսկ երկրորդ օրը 25 կմ-ից ավելի։ Արդյո՞ք կարելի պնդել, որ զբոսաշրջիկն անցել է 45 կմ-ից ավելի ճանապարհ։ Պատասխանը հիմնավորել։

a>20

b>25

a+b>45

6․ Ուղղանկյան երկարությունը 13 սմ-ից փոքր է, իսկ լայնությունը՝ 5 սմ-ից փոքր։Արդյո՞ք կարելի պնդել, որ ուղղանկյան մակերեսը 65 սմ2-ից ավելի է։ Պատասխանը հիմնավորել։

a<13

b<5

a x b > 65